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Abstract—We propose an approach to leverage multi-bounce returns of a flash LiDAR on portable smartphones for 3D specular
surface reconstruction. Traditional LiDAR systems assume that all returns are one-bounce returns, which can lead to an overestimation
of the true mirror surface and cause it to appear as if there is a hole. However, in reality, returns from mirror surfaces follow
multi-bounce paths. We operate with a consumer-grade, coarse multi-beam flash LiDAR, enabling real-time mapping on an affordable
and portable smartphone. To address the challenges posed by the coarse setup, where the transmitter and receiver are co-located, we
propose solving the association problem using the ’reciprocal pair’ algorithm. This algorithm can distinguish between different types of
bounces from multi-bounce returns. We have demonstrated detection over multiple consecutive frames for dense mirror mapping. In
addition to 3D reconstruction, we show that multi-bounce returns enhance performance in applications such as segmentation and
novel view synthesis. Our method can be integrated with state-of-the-art learned-based models, enhancing their robustness in
discerning ambiguous scenarios. Importantly, our approach can map various specular surfaces like mirrors and glasses without
assuming specific shapes, and it can operate on non-perpendicular specular-diffuse surface pairs.

Index Terms—3D Reconstruction, Specular Surfaces, Multi-bounce Returns, Segmentation, Novel View Synthesis
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1 INTRODUCTION

D ETECTION and mapping of specular surfaces like mir-
rors and glass remains a challenging unsolved problem

in computer vision. These surfaces are ubiquitous indoors,
yet most vision algorithms fail to handle their presence,
often resulting in 3D reconstructions containing holes along
specular surfaces, as shown in Fig. 1. The ability to properly
detect, segment, and map mirror-like surfaces is critical for
performance in downstream applications (e.g. robotics). For
example, robots can collide with specular surfaces or fail
to properly grasp them if they are not properly detected
and mapped. In this work, we present a practical specular
surface mapping approach that utilizes emerging consumer-
grade flash LiDAR cameras.

1.1 Ambiguities with Conventional RGB and LiDAR.
Existing RGB and depth cameras suffer from inherent ambi-
guities that make specular detection challenging. Each pixel
in a camera measures light traveling in a scene along a
certain ray. If this ray intersects a diffuse object, the pixel
measurement will encode information about the surface of
the object. However, if this ray intersects a specular surface,
the surface will strongly reflect light from other parts of the
scene along the camera ray. In this case, the light arriving
at the pixel encodes information about other portions of the
scene, as shown in Fig. 2(a). The problem of determining
whether a pixel is measuring a specular reflection from
a different part of the scene or a diffuse reflection along
the camera ray is fundamentally ambiguous. As a result,
3D mapping is challenging under the presence of specular
objects using RGB cameras alone.
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Fig. 1. Mirror Reconstruction with Conventional LiDAR. Conven-
tional LiDAR systems fail to map the 3D shape of mirrors because
mirrors reflect light away from the sensor. As a result, holes appear in
the reconstruction.

This ambiguity persists with scanning LiDAR sys-
tems as well. If a LiDAR scanner emits a laser spot to-
wards a specular point, the system will measure the time
of flight (ToF) of three-bounce light traveling from the
camera → specular point → a diffuse point in the scene →
specular point → camera. Determining if this returned light
is three-bounce light or one-bounce light that traveled past
the mirror is also challenging, as shown in Fig. 2(b). The
same issue holds: there exists an ambiguity as to whether
the light remained along the same camera ray or whether it
interacted with other parts of the scene. This effect can also
be seen in Fig. 1, where the camera mistakenly places points
behind the mirror plane.

1.2 Importance of Two-Bounce Returns.
Conventional scanning LiDAR only measures light that is
emitted and reflected along the same ray, leading to ambi-
guities between one-bounce and three-bounce light. In this
work, we leverage ToF of two-bounce returns to resolve



Fig. 2. (a) RGB camera. RGB cameras struggle to differentiate real vs
virtual images. (b) Conventional Scanning LiDAR. Scanning LiDAR
cannot differentiate one-bounce vs three-bounce returns. (c) Flash Li-
DAR. Flash LiDAR can detect two-bounce returns from co-linear paths,
as well as one-bounce and three-bounce returns.

these ambiguities, as shown in Fig. 2(c). Two-bounce light
paths occur when light is emitted along a ray that is different
from the ray that the light returns from, as shown in Fig. 2(c).
Measuring two-bounce light allows us to measure light
bouncing either from specular to diffuse surface or from
diffuse to specular surface. The presence of two-bounce
light indicates the presence of a specular surface, enabling
detection of real and virtual objects.

1.3 Two-bounce Flash LiDAR.

Flash LiDAR emits multiple laser spots at once and en-
ables detection of two-bounce returns. Henley et al. [1]
demonstrate proof-of-concept results of utilizing a simu-
lated flash LiDAR for specular surface mapping. However,
their approach relies on a non-confocal illumination setup,
where the receiver is able to densely sample the scene
spatially using mechanical scanning. As shown in Fig. 3,
dense sampling of the receiver enables classification of two-
bounce returns by using the fact that non-confocal returns
must be two-bounce. In practical scenarios, however, it is in-
feasible to have such high-resolution non-confocal captures
on consumer devices, which are currently often limited to
12× 12 spatial resolution, making two-bounce classification
challenging. In our work, we show how to disambiguate
one-bounce, two-bounce, and three-bounce returns for spec-
ular surface mapping.

1.4 Key Insight: Reciprocal Pairs and Multiple Frames.

To overcome the low spatial resolution of consumer-grade
LiDAR sensors, we introduce the reciprocal pair constraints
to classify one-, two-, and three-bounce light. The recip-
rocal pair constraints is based on the observation that a
specular surface can observe two- and three-bounce light,
and a diffuse point can observe one- and two-bounce light.
Combining this observation with Helmholtz reciprocity, we
are able to derive conditions to detect pixels that measured
light traversing the same paths, but in opposite directions.
These reciprocal pair pixels can then be used to triangulate
the position of diffuse and specular points in the scene. By
moving the handheld device and scanning the scene in an
unstructured manner, we can detect more reciprocal pair
pixels and gradually accumulate a point cloud of the mirror.
The reciprocal pair constraints and camera motion enable us
to solve the mirror mapping problem even with low spatial
resolution and multiplexed illumination on consumer-grade
smartphone LiDAR devices.

Our Capture Setup
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Fig. 3. Comparing our consumer-grade capture setting with prior
research-grade capture work. Henley et al. [1] consider a research-
grade setup with receiver (Rx) having a dense grid of SPAD pixels and
thus can measure two-bounce returns that do not coincide with one-
bounce return, enabling a straightforward separation of one-, two- and
three-bounce returns. In this work, we rely on a sparse grid of 12 × 12
pixels in smartphone LiDAR. In this setting, we can only measure two-
bounce and three-bounce returns that coincide with one-bounce returns
making it challenging to identify two-bounce returns.

1.5 Our Contributions.

The key challenge with our problem statement is that we
are relying on consumer-grade LiDAR cameras that have
low spatial resolution and flash illumination. As a result,
detection and classification of one-, two-, and three-bounce
signals becomes challenging, unlike the setup used by Hen-
ley et al. [1], which had a dense grid of pixels. Our key
contribution is to derive a set of reciprocal pair constraints
that enable this classification, from which we can identify
diffuse and specular pixels and map their 3D locations. To
the best of our knowledge, we are the first to develop an al-
gorithm that utilizes multi-beam returns for mirror mapping
on consumer-grade LiDAR. Finally, we demonstrate that
harnessing multi-bounce returns offers benefits beyond 3D
reconstruction, extending to applications like segmentation
and novel view synthesis. We improved over other state-of-
art learned-based models on these applications, particularly
in handling ambiguous scenes. Code will be released.

Our contributions are summarized as follows:

• Specular Mapping with Consumer-Grade Devices:
We demonstrate specular mapping with consumer-
grade LiDARs that have low spatial resolution and
flash illumination.

• Reciprocal Pair Constraints: We derive constraints
that enable classification of one-, two-, and three-
bounce light and use these constraints to map diffuse
and specular surfaces.

• Downstream Performance Improvement: Our
multi-bounce LiDAR specular mapping technique
enhances the performance of existing specular seg-
mentation, reconstruction, and novel view synthesis
techniques that use RGB information.



2 RELATED WORKS

2.1 RGB-based Mirror Mapping
Early works in specular surface estimation from standard
RGB cameras use geometric techniques to leverage the
optical flow of reflections under a moving camera [2], [3],
[4], the observation of specular highlights in varying light
or camera position [5], [6], [7], and the distortions of known
printed [8], [9], [10] or projected patterns [11], [12], [13],
[14], [15], [16]. Supervised, or learned-based techniques have
been proposed for per-pixel segmentation of mirrors [17],
[18]. These methods rely on RGB image cues, such as the
mirror frame, texture discontinuity inside and outside the
mirror, that may be confusing in some scenarios. Recently
neural radiance field based-techniques [19], [20], [21] have
focused on novel view synthesis in the presence of specular
and gloss surfaces by modeling multi-view reflections. MS-
NeRF [19] cannot estimate the mirror depth correctly, and
MirrorNeRF [20] requires correct mirror segmentation as in-
puts. Our method is physic-based that computes the correct
segment and depth to the mirror, and so is more generalized
to different scenes.

2.2 Dense-depth-based Mirror Mapping
Mei et al. [22] fuse RGB and ToF cameras, using ToF depth
discontinuities as a mirror cue. However, this approach
struggles to distinguish actual open spaces in the scene (e.g.
doorways) from virtual holes caused by mirrors. Our multi-
bounce modeling provides a physics-based distinction be-
tween real scene holes and virtual depth holes caused by
mirror reflections being mistaken as direct line-of-sight.

2.3 LiDAR-based Mirror Mapping
Other LiDAR methods rely on glare [23] or edge [24] detec-
tion, while we do not require these potentially ambiguous
cues. Yang et al. [25] exploit LiDAR symmetry, but only
model a specific three-bounce corridor case. We handle
more general layouts analyzing one, two, and three bounces.
Raskar et al. [26] propose two-bounce ToF to map specular
surfaces, but without direct scene illumination. Kutulakos et
al. [27] reconstruct specular surfaces through triangulation,
they assume a known 3D reference point, whereas we make
no such assumptions. O’Toole et al. [28] reconstruct specular
geometries, but possess full control over the illumination
pattern via a projector and can capture multiple images,
making reconstruction well-posed. We show a method that
can identify reciprocal pairs with a fixed illumination pat-
tern and a single capture, which is more ill-posed.

Henley et al. also exploit multi-bounce returns [1], by us-
ing a single-beam and multi-beam flash to scan glass or mir-
ror surfaces. However, their method assumes two-bounce
returns can only arrive at the receiver from directions that
are not coincident with any transmitted light rays, by in-
terpolating between one-bounce and three-bounce returns.
Their method lacks the ability to distinguish two-bounce
returns detected by typical, consumer-grade flash lidars that
can only receive along the directions of transmitted beams.
As a result, their method is unsuitable for baseline compar-
ison as it renders no detection on our device. Our method,
by contrast, was designed to be used on consumer-grade

flash lidar systems with coarse, low-resolution receivers.
Using reciprocal pair constraints, we are able to distinguish
between one-, two-, and three-bounce signals that return
along transmitted beam paths.

3 RECIPROCAL PAIR CONSTRAINTS

Scanning a specular surface with conventional lidar systems
is challenging because mirrors only reflect light in one
direction, often away from the lidar sensor. As a result, the
sensor doesn’t receive any physical information that can be
used to estimate the mirror geometry. In this section, we
will describe how we can exploit multi-bounce signals from
a consumer-grade handheld flash lidar. We first derive the
reciprocal pair constraints, which enables classification of
one-, two-, and three-bounce light. We then used the de-
tected reciprocal pair pixels and the corresponding bounce
classification to map the 3D geometry of the specular and
diffuse surfaces.

3.1 Experimental Setup.

Our lidar system consists of a pulsed laser and SPAD
array sensor. The pulsed laser simultaneously illuminates
a grid of 12 × 12 laser spots, and each pixel in a 12 × 12
grid in the SPAD array is viewing one of these 144 spots.
The laser spots and pixels have same viewing directions,
and thus illuminate and image the same scene point. For
consumer-grade devices, we assume that the sensor and
laser are roughly co-located. This property enables us to
derive convenient geometric relationships between the time-
of-flight measurements certain sets of pixels, referred to as
reciprocal pairs.

3.2 Reciprocal Pair Pixels.

Reciprocal pairs are pairs of pixels that share the same multi-
bounce light paths. Consider the scene in Fig. 4. Pixel A
is observing a point xd on the diffuse surface and pixel B
is observing a point xs on the specular surface. Suppose
that pixel B emits light towards xs. By Snell’s Law, the
incident light will be reflected by angle θ relative to the
surface normal towards xd. The light from xd will then be
measured by pixel A because diffuse surfaces reflect light
in all directions. The position of xd relative to the surface
normal at xs ensures that the incident laser pulse will be
reflected to xd.

Pixel A Measurement. Pixel A is observing a diffuse point
xd, and therefore will measure one-bounce and two-bounce
light. The one-bounce light travels the path xA

c → xd → xA
c .

The two-bounce light originates from the laser at pixel B
and travels the path xB

c → xs → xd → xA
c .

Pixel B Measurement. Pixel B is observing a specular
point xs, and therefore will measure two-bounce and three-
bounce light, but not one-bounce light. The two-bounce
light travels the path xA

c → xd → xs → xB
c . The three-

bounce light travels the path xB
c → xs → xd → xs → xB

c .

Estimating Geometry from Reciprocal Pairs. Using the one-
bounce and two-bounce signals measured at pixel A, we can
estimate the positions of xd and xs. The distance from the



Fig. 4. Multi-Bounce Flash Lidar. (a) Pixel A, observing a diffuse point xd, measures one- and two-bounce light. (b) Pixel B, observing a specular
point xs, measures two- and three-bounce light. (c) Reciprocal Pair Constraints. For (a) and (b) only, rays in red correspond to laser spots emitted
by pixel A, and rays in blue correspond to laser spots emitted by pixel B.

camera to the diffuse point |xd −xc| can be estimated using
the one-bounce signal as

rd = |xd − xc| =
ctA1B
2

, (1)

where c is the speed of light, tA1B is the time-of-flight of the
one-bounce light measured at pixel A. Once xd is known,
the position of the specular point xs can be computed as a
ray-ellipsoid intersection.

xs = INTERSECT(rB , E(xc,xd, ct
A
2B − rd)), (2)

where rB corresponds to the viewing direction of pixel B
and E(f1, f2, a) is a 3D spheroid ellipsoid with focus at f1
and f2, major axis length a, minor axes length b =

√
a2 − f2,

and focal length f = |f1 − f2|. An analytical expression for
xs is provided in the Supplementary.

Problem Statement. The key insight is that reciprocal pair
pixels enable mapping of a single point on a specular
surface. However, there are two key challenges with using
consumer-grade hardware for such techniques. (1) It is
challenging to determine which two pixels are reciprocal
pairs due to flash illumination. (2) Due to the sparse number
of pixels, there is limited multi-bounce information. In the
following subsection, we will discuss how to algorithmically
mitigate these two challenges.

3.3 Detecting Reciprocal Pairs in Flash Lidar
In practice, it is unknown which two pixels in a 12 × 12
array are reciprocal pairs, how many reciprocal pairs there
are, and if any reciprocal pairs exist at all. In this section, we
will introduce techniques to detect reciprocal pairs using
two constraints: peak match and path diff match. Both
constraints hold true under the assumption that the laser
and SPAD sensor are roughly co-located. The constraints
are visually explained in Fig. 4(c).

3.3.1 Constraint 1: Peak Match
The peak match constraint is derived from Helmholtz reci-
procity. Consider the two-bounce returns that arrive at pixel
A and pixel B in Fig. 4. The two-bounce light arriving at
pixel A travels along the path xB

c → xs → xd → xA
c . Simi-

larly, the two-bounce light arriving at pixel B travels along
the path xA

c → xs → xd → xB
c . Because xA

c = xB
c = xc,

these traversed paths are precisely the same. By Helmholtz
Principle, the two traveling rays experience the same optical
“adventure” (i.e. path), but in reverse directions. Therefore,
they also share the same pathlength. The peak match con-
straint for reciprocal pair pixels can be expressed as

tA2B = tB2B . (3)

In Fig. 4, this equation can be understood by analyzing the
blue paths in (a) and the red paths in (b). They are the same
paths, but in opposite directions.

3.3.2 Constraint 2: Path Diff Match
While the peak match constraint is derived with respect to
two-bounce light, the path diff match constraint is derived
with respect to one-bounce, two-bounce, and three-bounce
light. Recall that a reciprocal pair contains one pixel observ-
ing a specular surface and one pixel observing a diffuse sur-
face. The pixel observing the diffuse surface measures one-
and two-bounce light, and the pixel observing the specular
surface observes two- and three-bounce light. Mathemati-
cally, the path diff match constraint can be expressed as

tA2B − tA1B = tB3B − tB2B . (4)

This constraint can be better understood in the context
of Fig. 4(a) and (b) by subtracting the three-bounce path-
length from the two-bounce pathlength, and the two-bounce
pathlength and the one-bounce pathlength. The resulting
pathlength is |xc − xd|+ |xd − xs|+ |xs − xc|, which forms
a triangle between xc, xd, and xs.

3.4 Specular Surface Estimation
To reconstruct specular surface with a consumer-grade li-
dar sensor, we (1) detect reciprocal pair pixels (if any are
detected) using the constraints in 3.3, (2) determine which
pixel is observing a specular point and which pixel is
observing a diffuse point, and (3) analytically compute the
distance using the equations in 6. Each pixel measurement
will contain up to two echos. An ECHO is defined as a
measured pulse return. If a pixel only receives one ECHO,
that pixel is assumed to be viewing a diffuse surface and the
echo is one-bounce light. If a pixel receives two echos, then it
measures two returning pulses. In this case, the first echo is
either one-bounce or two-bounce light and the second echo



Fig. 5. Experimental Setup. We use a handheld device for 3D room
scanning, eliminating the need for complex research-grade equipment
or manual calibration.

is either two-bounce or three-bounce light, as shown by the
possible scenarios in Fig. 4(c).

Resolving Echo Ambiguity. To resolve this echo ambiguity,
we first apply the peak match constraint by computing pair-
wise differences between ECHO1 and ECHO2 for all pixels.
Any pixel pair that satisfies ECHOB

1 − ECHOA
2 = 0 satisfies

the peak match constraint, as shown in Fig. 4(c). Then, we
test the path diff match constraint for all pixel pairs (A,B)
that satisfied the peak match constraint. We perform this by
computing |ECHOA

2 − ECHOA
1 | − |ECHOB

2 − ECHOB
1 |. Pixel

pairs that satisfy this second condition are reciprocal pairs.
For these reciprocal pair pixels, we can determine which
echoes correspond to the one-, two-, and three-bounce sig-
nals by referring to the time-of-flight ordering in Fig. 4(c).

Estimating the Scene. Once we determine the one-, two-,
and three-bounce signals in the reciprocal pair, we perform
step (2) listed above. Step (2) can be accomplished by
looking at the relative time-of-flight of the two reciprocal
pair pixels. As shown in Fig. 4, one-bounce light arrives
before three-bounce light. Therefore, by identifying which
pixel measures one-bounce and three-bounce light, we can
determine the diffuse and specular pixel. Lastly, once we
determine the diffuse and specular pixel, we can compute
the 3D position of diffuse and specular points using eq. (1)
and eq. (2). Note that many captured frames will not have
reciprocal pairs due to the happenstance of such reciprocal
pairs. However, we show experimentally that these recip-
rocal pairs will appear periodically, and are sufficient to
estimate the mirror geometry.

4 RESULTS AND ANALYSIS

4.1 Experimental Setup

We use a consumer-grade smartphone LiDAR device. This
device contains a low-spatial-resolution array of SPAD pix-
els. Each Rx pixel of the sensor array has a corresponding
Tx laser emitter, such that the Tx and Rx are both pointing
in the same direction and are approximately co-located. The
viewing direction of each pixel (i.e. camera rays) is known
through prior camera calibration. Each pixel measures a
histogram of intensities. These histograms are pre-processed
such that each pixel outputs (up to) two echos. The pre-
processing step consists of peak finding and computation of
a confidence score based on SNR for each peak (or echo).
From this pre-processing step, our method receives three
inputs: (1) camera rays for each pixel, (2) detected echos for

RGB images
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LiDAR echoes

3D mirror points
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Fig. 6. Dense 3D Mirror Reconstruction Pipeline. The dense 3D
scene points and camera poses are computed from RGB images via
structure-from-motion (SfM). 3D mirror surface points are computed
using the reciprocal pair algorithm from the LiDAR. Spurious mirror
points are filtered and densified with Poisson mesh reconstruction. After
mirror surface is reconstructed, incorrect reflection points from SfM that
are behind the mirror surfaces are removed with a culling algorithm.

each pixel, and (3) the confidence score for each echo. We
filter out echoes with lower confidence, with the threshold
treated as a hyperparameter.

We conduct scans of real-world rooms by freely moving
around with the handheld device, without need for complex
research-grade equipment or manual calibration, as shown
in Fig. 5. The rooms are naturally illuminated at full bright-
ness by the existing room lights. We present the results
of mirror surface reconstruction and demonstrate how our
method enhances segmentation and novel view synthesis
techniques.

4.2 Dense 3D Mirror Reconstruction

In this section, we outline the procedure for dense 3D mirror
reconstruction. Mirror detection is accomplished using the
reciprocal pair algorithm, and the scene is generated from
structure-from-motion (SfM). Accurately locating the mirror
surface allows for the removal of incorrect reflections.

Dense Scene Map from RGB Refer to Fig. 6 for the pipeline.
From RGB images, we use structure-from-motion (SfM) to
reconstruct dense 3D scene points. SfM is readily available
on smartphones either with ARKit or ARCore libraries,
or COLMAP [29] on personal computers. Due to the low
spatial resolution of the LiDAR, we resort to dense scene
reconstruction from RGB images for better visualization
and pose estimation. Attempts have been made to recon-
struct the scene solely with LiDAR 3D points. However,
the scanned data quality is too sparse and noisy, lead-
ing LiDAR-based pose registration algorithms like Iterative
Closest Point (ICP) [30] to drift after only a few frames.

3D Mirror Points from LiDAR Given the input of two
echoes per pixel of the Rx, we first resolve the association
problem via the reciprocal pair constraints to determine
which echo is one-, two-, or three-bounce return. Next,
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based on the analytical equations, we compute the distance
to the diffuse surface rdc using eq. (5). Given rdc, we then
compute the distance from LiDAR to the specular surfaces
rsc using eq. (6). Finally, given rsc, the final 3D mirror points
are reconstructed using eq. (7). At this stage, we need to
integrate the 3D mirror points (from LiDAR) with the 3D
scene points (from RGB images). Since SfM operates in a
different world frame compared to LiDAR, we begin by
projecting the 3D mirror points onto the 2D image plane
using the known calibration between the LiDAR and camera
sensors. Subsequently, the 2D mirror points are unprojected
to 3D into the SfM world frame, with depth values up to a
scale factor.

Dense Mirror Surface Reconstruction Due to the limited
spatial resolution, typically only a few (0-4) reciprocal pairs
(and mirror points) are detected per frame. Therefore, we
accumulate points over multiple frames to create a denser
mirror surface. The poses of each frame are based on SfM
estimation. We refine the 3D mirror points into a denser
mirror surface using Poisson mesh reconstruction, which
is more versatile compared to plane fitting. The reciprocal
pair algorithm does not assume a planar specular surface,
and similarly, we avoid assuming a planar mirror surface
during dense surface reconstruction. Another benefit of the
reciprocal pair algorithm is that it allows derivation of the
normal for each mirror point, although our current results
do not yet include this feature.

Culling Reflection The scene generated from SfM incor-
rectly places reflections behind the mirror surface, assuming
all RGB camera rays are one-bounce. Our method accurately
locates the true 3D mirror surface, enabling the removal of
incorrect reflections, illustrated by Fig. 9. The core concept
involves checking if incorrectly placed reflection points,
when projected onto the LiDAR’s view frustum, intersect
with the true mirror plane. If they do, these points are iden-
tified as reflections and not part of the diffuse scene points.
In practice, we first compute the convex hull polygon of the
detected mirror points in the 2D image. This convex hull
serves as the LiDAR’s frustum counterpart. By projecting all
the 3D scene points onto the image plane, only the reflection
points would be inside the convex hull and so are removed.

4.2.1 Quantitative Analysis
Fig. 7 shows the mirror reconstruction quantitative results
for two scenes. Scene 1 features a small mirror approx-
imately 1 foot tall, accompanied by a synthetic ceiling.
The objective is to detect points on the top of the mirror
using multi-bounce returns from the ceiling, alongside the
lower part of the mirror from the floor. Scene 2 features a
large mirror hanging on the walls, using only multi-bounce
returns from the floor. Poster boards were positioned along
the wall surface to assist with SfM pose registration and do
not affect mirror point detection. First column shows the 3D
mirror points projected onto the image (red points), most
of which lie within the true mirror surface (dashed blue
lines). Second column shows the quality of the 3D mirror
points in a front-view, while the third column shows the top
view. The fourth column quantifies the errors of the detected
mirror points with a histogram showing the distances from
the mirror plane.

Fig. 9. Culling Reflection with 3D Mirror Reconstruction. Green
circle shows the removal of incorrectly reflection points constructed from
RGB-based SfM that are behind the true mirror surface reconstructed by
our method.

To estimate the ground truth for the 3D mirror surface
plane, we assume the mirror plane aligns with the back wall
it hangs on. We employ RANSAC [31] plane fitting on the
first echo (which resembles the back wall) to estimate this
plane. We plot the histogram showing the error, which is the
shortest distance from each 3D point to the estimated plane.
Excluding the outliers, both scenes indicate that the points
are within 60mm of the mirror plane, with the majority
being within 20mm of the mirror plane. Other sources of
errors include LiDAR sensor noise, causing inaccuracies in
mirror plane estimation (particularly in scenes with few
points from the back wall), errors in SfM registration, depth
scaling discrepancies between LiDAR and SfM coordinate
frames, and floating-point precision issues related to the
equality constraints of reciprocal pairs (where values under
10mm are considered equal).

4.2.2 Qualitative Analysis
For scene 1 and 2, we include the dense mirror surface
reconstruction from the mesh filtering, in Fig. 8(c). In scene
1, the mirror surface nearly covers the entire mirror as it
has detection from top and bottom of the mirror. In scene 2,
most of the bottom of the large mirror is covered. Scene 3
utilizes the left side wall of the mirror to reconstruct most of
its left side. Notably, in scene 3, there is no back wall aligned
with the mirror for quantifying errors. Note that all results
are shown with the incorrect reflections behind the mirror
removed.

4.3 Mapping Glass
We demonstrate our reciprocal pair algorithm on other
specular surfaces such as glass. In Fig. 10, we map glass
doors and glass walls. Glass is more challenging to detect
due to its imperfectly specular nature, resulting in weaker
and noisier signals. In (a), we map the bottom of the glass



(a) Glass Door                              (b) Glass Wall

Fig. 10. Mapping Glass Surfaces. We show that our algorithm can
detect other specular points such as (a) glass door and (b) glass wall.
Glass door leverages multi-bounce returns from the floor, and Glass
wall from both the floor and ceiling. Note that glass is more challenging
than mirrors because of weaker and noisier signals. Detected points are
shown as red points.
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Fig. 11. Pipeline for refining RGB mirror segmentation with LiDAR.

door by bouncing off the floor surface. In (b), we map the
top and bottom sections of the glass wall on the right side
of the door, bouncing off the floor and the ceiling.

4.4 Enhancing RGB-based Mirror Segmentation with
LiDAR
In addition to 3D reconstruction, we demonstrate how lever-
aging multi-bounce returns from LiDAR can help in mirror
segmentation. Fig. 11 shows the segmentation pipeline for
combining both RGB and LiDAR results. For RGB, we use
learned-based model MirrorNet [32] as demonstration. First,
we binarize the probability output mask from MirrorNet
and then use connected-components to separate different
mask objects. From the LiDAR 3D mirror points, we apply
convex-hull to obtain the polygon outline of the mask.

RGB                                                                                   LiDAR                                                                       LiDAR + RGB

Fig. 12. Refining RGB Segmentation with LiDAR. LiDAR corrects the
incorrect mirror mask from RGB segmentation. First column shows the
incorrect mirror mask detected by RGB-based segmentator (MirrorNet),
indicated by the yellow arrows. Second column shows masks from
LiDAR mirror detection (mesh reconstruction from the detected points).
Third column shows the combined mirror masks from both sensors.
RGB gives a denser detection, while LiDAR can identifies the true mirror
segment.

Ours: True-Positive

MirrorNet: True-Positive
Ours: True-Negative

MirrorNet: False-Positive

Ours: True-Positive

MirrorNet: True-Positive

Ours: True-Negative

MirrorNet: False-Positive

(c) Real Glass (d) Fake Glass

MirrorNet

Ours

(a) Real Mirror  (b) Fake Mirror

Fig. 13. Enhancing Robustness of Segmentation Detector. (a) True
Mirror: Our algorithm successfully detects the mirror, shown as red
points. MirrorNet [32] correctly identifies the mirror, shown in blue tint. (b)
Fake Mirror: The frame contains only paper. MirrorNet misidentifies the
paper as a mirror, while our algorithm rejects it. (c) True Glass: Glass
is present inside the frame. Both our algorithm and MirrorNet detect
it accurately. (d) Fake Glass: The frame is empty inside. MirrorNet
incorrectly classifies the empty frame as a mirror, whereas our algorithm
correctly rejects it.

Subsequently, we determine the true mirror object mask by
overlapping the RGB mask with the LiDAR mask. Finally,
we apply a fill-in polygon algorithm to address any holes
within the mask.

Fig. 12 illustrates how we correct incorrect mirror seg-
mentation from any RGB-based detector. The first column
shows ambiguous mirror detection from MirrorNet, pos-
sibly due to the absence of most of the ‘mirror frame’
cue in the image. Incorrect detections are indicated by the
yellow arrows. The second column displays the LiDAR
mask, which is more accurate but may only capture part
of the mirror due to the reciprocal pair algorithm requiring
adjacent surfaces for multi-bounce returns. By leveraging
the strengths of both methods, the LiDAR mask identifies
the true-positive areas, while the RGB mask helps detect a
denser mirror segment, resulting in a clean segmentation as
shown in the third column.

For our analysis, we set up scenarios involving ambigu-
ous objects such as real and fake mirrors and glass. As
depicted in Fig. 13, we test: (a) a true mirror, (b) a fake
mirror with paper inside mimicking a mirror texture, (c)
a true glass, and (d) a fake glass with nothing inside the
frame, resembling transparent glass.

Our algorithm correctly detects the true mirror (a) and
true glass (c), as indicated by the red points in the detections.
Additionally, we successfully reject the fake mirror (b) and
fake glass (d) cases. MirrorNet [32], which primarily relies
on cues from RGB images, fails on the fake mirror and fake
glass scenarios (although to its credit, it is not trained on
glass). It mistakenly detects glass as mirror, possibly basing
off the cue of ‘mirror frame’.

The model [22], which trains on dense depth images
using depth discontinuities as cues, would also fail on the
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Fig. 14. Pipeline for enhancing novel view synthesis with LiDAR.
MirrorNeRF requires mirror mask as input for novel view synthesis. We
show the combined mask of from RGB and LiDAR masks produces
better result from pure RGB mask of MirrorNet [32].

empty frame case (d), as it does not effectively distinguish
between one-bounce and three-bounce returns. This limita-
tion was shown in the doorway scene of their paper. Our
physics-based 3D point detection can be seamlessly inte-
grated with any RGB-based learned model for joint feature
learning [33], harnessing the strengths of both approaches.

4.5 Enhancing Novel View Synthesis with LiDAR

We demonstrate how multi-bounce LiDAR returns can
enhance a novel view synthesis model. The RGB-based
learned model MirrorNeRF [20] relies on the accurate mirror
mask as input for its Neural Radiance Field (NeRF) model.
Creating a mirror mask manually involves labor-intensive
labeling, so we have developed an automated solution for
generating mirror masks. we present two pipelines: one
using the result generated from the RGB-based mask using
MirrorNet, and another using the combined mask from RGB
and LiDAR masks, as discussed in Section 4.4.

The results are shown in Fig. 15. First column shows
the input sensor modalities. Second column shows the
generated masks, where the RGB-based method incorrectly
identifies part of the poster as the mirror, indicated by the
yellow arrow. Given the mirror mask as input, third column
shows the novel view synthesis results from MirrorNeRF.
Qualitatively, the part of the poster that is incorrectly iden-
tified as mirror by RGB-based method appears blurrier
than the combined RGB+LiDAR method. Quantitatively, the
PSNR values of RGB+LiDAR method is also higher than
RGB method, 24.1 vs 22.5 respectively.

The PSNR improvement for the novel view synthesis re-
sult appears to be marginal. However, our results can handle
edge cases better, which the PSNR metric cannot capture.
Detecting specular points reduces the chances of detecting
diffuse surface as a specular one and vice versa and avoids
artifacts in rendering due to these false detections. The
artifacts are sparse and localized. Thus our improvements
have marginal effect on the overall PSNR, but enhance
the robustness of novel view rendering techniques under
specular surfaces.

5 DISCUSSION AND LIMITATIONS.
5.0.1 Single Reciprocal Pair and Duplicates.
We analyze reciprocal pair detection in a single frame in
Fig. 17. Visually, the mirror points (red triangles) correctly
lie in the empty space along the wall. The two-bounce points
(cyan) and three-bounce points (red +) all align in a single

line directed towards a single pixel of the receiver. This
alignment adheres to the reciprocal pair assumption, where
the two-bounce and three-bounce returns are echoes at the
same pixel spot. As shown in (b), the three-bounce point is
the ’mirror image’ of the one-bounce point, symmetric over
the plane of the mirror, at the same distance d. The two-
bounce point appears off-plane from the diffuse surface.

Due to the thresholding of floating-point number equal-
ity with the reciprocal pair constraints, we may get du-
plicates for the same diffuse point Fig. 18(a). We remove
duplicate pair by choosing the pair with minimum overall
errors from the constraints Fig. 18(b).

5.0.2 Motion and Angle of Scanning

We investigate our ability to recover reciprocal pairs from
various angles during scanning. When scanning, we try to
keep the mirror surface and diffuse surface as 50/50 split
in the receiver FoV. Using different motions (translation and
rotation), we demonstrate our capability to recover recip-
rocal pairs from different angles. Fig. 16 shows a heatmap
of number of detections of each pixel in the Rx. In cases
of nearly static motion (left), detections are concentrated
mostly in the middle rows from similar angles. With larger
motions (right), we observe a wider spread of detections
across the array, indicating successful capture of reciprocal
pairs from diverse angles.

5.0.3 Limitations

Our method only reconstructs a sparse set of points and has
limited accuracy. These limitations arise due to the limited
sensor spatio-temporal resolution because (a) fewer recip-
rocal pairs are detected, (b) ambiguity between reciprocal
pair candidates increases, and (c) 3D ranging resolution
worsens. These effects will be mitigated and reconstructions
will improve as the quality of commercial-grade LiDAR
sensors improves, which is likely as they are becoming
more ubiquitous. However, the goal of this paper was not
to demonstrate high-quality 3D reconstruction, but rather to
demonstrate that the use of multi-bounce signals (even with
coarse resolution) can be useful for handling specularity in
vision tasks.

The reciprocal pair constraints necessitate the presence
of reciprocity between incoming and outgoing lights within
the sensor’s field-of-view (FoV). This implies that our al-
gorithm requires both specular and bounce surfaces to be
within the FoV. However, this assumption is valid because
many sensors have wide FOVs (45◦) and many real-world
scenes are > 1-2 meter away, including those in our capture
setups. In the scenario where large mirrors extend beyond
the FoV, our method primarily captures the edges of the
mirrors. Additionally, for multi-bounce triangulation to be
effective, both specular and diffuse surfaces must be within
a geometry where their angles are (90◦) or less. However, we
do not assume that the specular surfaces need to be planar.

Lastly, spurious detections can occur due to sensor noise
or inter-reflection light paths that undergoes more than
three bounces from nearby objects in the scene. In Fig. 19
(c) and (d), returns from sofa give erroneous mirror point
detection, where the lights undergo more than three bounces
between sofa, floor, and the mirror surfaces.
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Fig. 15. Enhancing Novel View Synthesis (NeRF) with LiDAR. First column shows input sensor. RGB-only for the first row, and RGB+LiDAR
for the second row. The mirror surface is highlighted with dashed blue lines. Red points shows the LiDAR mirror points. Second column shows
the masks of mirror segmentation. RGB detector (first row) incorrectly segments part of the left poster as mirror, shown by the yellow arrow. By
combining RGB and LiDAR masks, the correct mirror segmentation is constructed (second row). Third column shows the novel view synthesis
with Mirror-NeRF that requires mirror masks as input. Incorrect masking from RGB segmentation results in worse rendered view comapred to the
corrected mask from RGB+LiDAR segmentation. Yellow boxes show the zoomed-in regions. RGB PSNR: 22.5, RGB+LiDAR PSNR: 24.1.

Fig. 16. Larger Motion Increases Number of Reciprocal Pair Detec-
tions. Heatmap showing detection of the 12 × 12 SPAD array, where
each cell indicates number of detections. The top half of the array
corresponds to a mirror, and the bottom corresponds to the floor. (Left)
controlled scene with minor phone movements, where the detection is
mostly concentrated in the middle rows of the mirror. (Right) scene with
large phone movements, we can observe the detections are more widely
spread out. This indicates that our reciprocal pair method can effectively
detect across a wider region of the receiver at various angles with more
motions.

(a)   45⁰ View                                                                           (b) Side View

Fig. 17. Reciprocal Pair Detection in a Single Frame. The three-
bounce, two-bounce, and mirror points lie along the same line (yellow
arrow) toward the sensor. (b) The three-bounce point is the ‘mirror
image’ of the one-bounce point, symmetric over the plane of the mirror,
with the same distance d. Two-bounce appears as off-plane from the
diffuse surface.

(a) Duplicates                                (b) Duplicates Removed 

Fig. 18. Removing Duplicates. Due to the thresholding of floating
point number equality with the reciprocal pair constraints, we may get
duplicates for the same diffuse point (a). We remove duplicate pair by
choosing the pair with minimum overall errors from the constraints (b).

6 CONCLUSION

The handheld smartphone setup poses challenges due to its
use of a coarse emitter and corresponding receiver for real-
time operation. We introduce the ’reciprocal pair’ method to
address the association problem, allowing us to distinguish
between one-, two-, or three-bounce returns at these coarse
scanned spots where the transmitter (Tx) and receiver (Rx)
are co-located. Our results demonstrate the capability to
reconstruct true specular surfaces in 3D and effectively cull
reflections in the scene.

We show our approach effectively enhances the ro-
bustness of state-of-the-art learning-based methods in am-
biguous scenarios, including segmentation and novel view
synthesis applications. This not only paves the way for
future applications but also highlights the simplicity and
effectiveness of our methods for integration with various
algorithms. We anticipate that leveraging multi-bounce re-
turns will unlock new possibilities in fields and applications
that were previously unattainable.



(a)  False-positives Points                         (b) Filtered Mesh Reconstruction

(c) Nearby objects inter-reflections (d) Nearby objects inter-reflections 

Fig. 19. False Positive Detection. (a) Potential false-positives (green
circles) can occur due to sensor noise or inter-reflections from nearby
objects in the scene. (b) Mesh reconstruction and morphological filtering
can remove spurious detections over time. (c) and (d) shows the inter-
reflection from the sofa. One-bounce is shown as purple point, and
mirror point is shown as red triangles.
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7 SUPPLEMENTARY

Here we derive the analytical expression for xs that is used
in our experimental results. For a more precise measurement
of the one-bounce return in eq. (1), we introduce xl as a
point on the LiDAR transmitter, that has a baseline b from
the receiver xc. Based on Fig. 4, the two-bounce path of
pixel B is xl → xd → xs → xB

c , and the one-bounce path of
pixel A is xl → xd → xA

c . Here we compute the range rdc,
which is the range from point xd to xc. Using the spherical
coordinate, let θ be the polar angle and ϕ be the azimuthal
angle, and with a coordinate frame where X, Y, and Z axes
point left, up, and forward with respect to the LiDAR, rdc is
computed as:

rdc =
1

2

c2t21 − b2

ct1 − b sin(θdc) sin(ϕdc)
, (5)

where c is the speed of light, and the ToF of the one-
bounce return is t1 = 1

c (rdl + rdc).
Analytical expression of eq. (2): With the ToF of two-

bounce t2 = 1
c (rdl + rds + rsc), and the relationship rds =

c(t2− t1)+ rdc− rsc, we can substitute the expression using
law of cosine for the triangle with xd,xc,xs endpoints, and
compute rsc as:

rsc =
c

2

∆t12[∆t12 +
2rdc
c ]

∆t12 + (1− cos δ) rdcc
, (6)

where ∆t12 = t2 − t1, the time difference between two-
bounce and one-bounce returns, and δ is the angle between
the direction of arriving echoes at pixel A and B, such that
cos(δ) = AB/|A||B|.

Finally, the 3D coordinate X , Y , and Z of the point xs

on the specular surface is:XY
Z

 = rsc

 cos(θ)
sin(θ)sin(ϕ)
sin(θ)cos(ϕ)

 , (7)
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